AD=A0S6 821 COLORADO UNIV BOULDER DEPT OF COMPUTER SCIENCE
THE FSCAN LEXICAL ANALYZER GENERATING SYSTEM.(U)
JUN 78 6 CLEMM
UNCLASSIFIED Cu=-Ccs=-128-78 _ ARO=15074:3-M

F/G6 9/2

DAAG29-78=G-0046
NL

-

~

o, =

TR —

-
(Y
Q0
| O
= @L
w C.:
: 8 cu-cs-12&-7a] Ty @ﬂ 7
, hii N 0 LKL —/ /D_/
\ =l E Pe— ~— r
1 (=
4 =3

1IARS Q/sW?/ 5 (

A~

‘THEw LEXICAL }NALYZER ﬁENERATING SYSTEM , /

- rmeean——_——. s

AL -
C:;; QggffrexéC\emm
Department of Computer Science

University of Colorado
Boulder, Colorado 80309

(:::;//i INTERIM TECHNICAL REPCIT’L’>

U.S. ARMY RESEARCH OFFICE

conmgwezg -78-6-ipas, NS Fuw MCS77-p24 74 /
/5 - : |

Approved for public release;
Distribution Unlimited

oq 496

78 07726 003 ~ |

“THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS AN OFFICIAL DEPARTMENT
OF THE ARMY POSITION, UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS.

We acknowledge U. S. Army Research support
under contract no. DAAG29-78-G-0046 and
National Science Foundation support under
grant no. MCS77-02194

5

ATRE A g
A SIS A

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered

REPORT DOCUMENTATION PAGE oertEAD DOSTRUCTIONS
'V REPORT NUMBER TM ACCESSION NO. l-‘maﬁkﬁ_—_
Sabialdadle .

4. TITLE (and Subtitle) : 8. TYPE OF REPOART & PEMON COVERED
"The FSCAN Lexical Analyzer Generating Systeh" 7n‘1
6. PERFORMING ORG. REPORYT NUMBER
7. AUTHOR(®) .)
feoffrey Clemm DAAG29-78-G-0046 v
MCS77-02194 "N £
5. PERFORMING ORGANIZATION NAME AND ADORESS ~ RROaRAN KL ENENT. PROJFCT. T

Dept. of Computer Science ”
Univ. of Colorado at Boulder

Boulder, Colorado 80309 i
11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORY DATE
U. S. Army Research Office June, 1978
Post Office Box 12211 13. NUMBER OF PAG

.Research Triangle Park, NC 27709
I1TORING A NAM ADD! i1 ditfocent from Ceontrolling Office) 15. SECURITY CLASS. (of thie repert)

Unclassifi
“t Lll DOWNGRADIN

NA

6. DISTRIBUTION STATEMENT (el this Kepeoet)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, Il difterent from Repert)

NA

19. SUPPLENENTARY NOTES

The findings in this report are not to be construed as an official
Department of the Army position, unless so. designated by other authorized
docume:.ts.

19. KEY WORDS (Continwe on eide If y end Identily by block number)
lexical analysis, FORTRAN scanner, FORTRAMN arammar

. ABSTRACT (Centinue on reverse side I necessary and identify by block number)

There has recently been much interest in the development of software valida-
tion tools for FORTRAN. Such tools are usually desianed to analyze programs
written in ANSI standard FORTRAN. However, because there are many dialects
and extensions of FORTRAN in use, it would be desirable to analyze these as
well. One solution is to develop a sinale diaanostic tool for standard FORTRAM

the variations occur at lexical and syntactic levels, the design of a flexible

Netesre e

ronm
DD 13am 73 V73 toimon oF 1 wov 68 1s owsoLETE Unelassified

SECURITY CLASSIFICATION OF THIS PAGE Dete

which may be easily modified to accept variants of the lanquage. Since most of ,7

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

lexical analyzer is a key issue. The FSCAN Lexical Analyzer Generating System
has been desianed with this purpose in mind. This report describes the FSCAN
lanquace, a compiler for the languace, and an interpreter for the resulting
object code. An example of a complete FSCAN program is included. Q

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

B N

Abstract
There has recently been much interest in the development of software
validation tools for FORTRAN. Such tools are usually designed to analyze
programs written in ANSI standard FORTRAN. However, because there are
many dialects and extensions of FORTRAN in use, it would be desirable to
analyze these as well. One solution is to develop a single diagnostic
tool for standard FORTRAN which may be easily modified to accept variants
of the language. Since most of the variations occur at lexical and
syntactic levels,the design of a flexible lexical analyzer is a key
issue. The FSCAN Lexical Analyzer Generating System has been designed
with this purpose in mind. This report describes the FSCAN language, a
compiler for the language, and an interpreter for the resulting object
code. An example of a complete FSCAN program is included.

ACCESSION fur
m ths«mu"‘
o0e Buff Section [
SHANROUNCED O
JUSTIFIGATION... e
DISTRIBUTION /AVAILAR!LITY CODES

Dt Avail. #7d/or SPEGIAL
“;’ ’

I. INTRODUCTION

'The first phase of the analysis of a computer program written in
some programming language is "lexical analysis" or "scanning", where
the source text is broken up into the words or "tokens" of the programm-
ing language. For most languages this is a relatively straightforward
task, as spaces or some other delimiter is required at any token separa-
tion points that could be ambiguous. Unfortunately the ANSI FORTRAN stand-
ard specifies that spaces for the most part are meaningless in FORTRAN
programs [1]. This creates several ambiguous situations that cannot be
resolved without backtracking by a left to right scan with single char-
acter lookahead of the source text. For example, if the string 'DO' has
been read, it is unclear whether the scan has reached the end of the
keyword, 'DO', in a statement such as

poMmpI=1,3

or whether the scan is in the middle of a variable name in a statement
such as

00T = § » X

The problem of the lexical analysis of FORTRAN is further complicated
by the existence of numerous dialects and extensions of FORTRAN that vary
according to the installation and particular compiler in use. The pro-
blem is therefore most acute for a system such as the DAVE software val-
idation system [2] where it is desirable that all variants of FORTRAN
be readable. Ordinarily this would entail recoding the lexical analyzer
module for each new FORTRAN variant, in addition to maintaining a 1ibrary
of already coded lexical analyzer modules.

To minimize these tasks, the FSCAN (Fortran SCANner) Lexical Ana-
lyzer Generating System was developed. The FSCAN system consists of a
language, a compiler for the language, and an interpreter for the object
code produced by the FSCAN compiler.

T1. THE LANGUAGE

The FSCAN lanauaae (henceforth referred to simplv as "FSCAN") was
desianed to allow the specification of a complex lexical analvzer. such
as that reauired bv FORTRAN. in as concise and understandable a manner as
possible.

A. Programs and Procedures

An FSCAN program consists of a single FSCAN procedure (within which
may be defined additional procedures). An FSCAN procedure specifies in
an extended BNF-style notation a grammar that describes a left to right
pass over the source text. Within the grammar, actions such as the gen-
eration of a token are indicated.

Syntax
An FSCAN procedure consists of a sequence of grammatical rules which

are delimited by the keywords, 'SCANNER' and 'END'. Following each of
these keywords is the goal symbol for the sequence of rules; this also
serves as the name of the procedure. The redundant repetition of the
goal symbol is used by the FSCAN compiler to ensure that the 'SCANNER' -
'END' pairs are matched in the way the programmer intended.

Example
SCANNER DIG:

rule 1; rule 2; ...; rule n;

END DIG
Semantics

The rule indicated by the goal symbol of a procedure specifies an

LR(1) parse of the source text which is performed when the procedure is
called. The parse is performed in a longest match manner; namely, given
the choice between finishing and parsing more of the course text, the
procedure will always continue parsing.

B. Rules

An FSCAN rule is either a macro rule, a variable defining rule, or
a procedure rule. The scope of rule definitions corresponds to that of
ALGOL.
1. Macro Rules

As in a BNF rule, the left side of a macro rule is a nonterminal
while the right side is a sequence of alternatives. The extensions of
FSCAN are that each alternative may optionally have an associated action,
and that an alternative, rather than being simply a sequence of terminals
and nonterminals, may contain any of a variety of regular expression
style operators as well as parentheses for grouping.

Syntax
Each alternative is preceded by a single-right-arrow (>). The

optional action is placed at the end of the corresponding alternative
and is preceded by a double-right-arrow (=).

Example
TEXT - fscan_reg exprn 1 = action 1

~+ fscan_reg exprn 2

+ fscan_reg exprn 3 = action 2
Semantics

A macro rule is a standard macro in that the right part of the rule

textually replaces any occurrence of the nonterminal of the left part,
when the occurrence is in an FSCAN regular expression within the scope
of the macro rule definition. A macro rule cannot be recursively de-
fined. Thus in the above example, the nonterminal, TEXT, could not appear
in any of the three FSCAN regular expressions in the right part. During
execution when any of the alternatives have successfully been matched
with the source text, the corresponding action, if any, is performed.
The compiler ensures at compile time that during execution of the object
code it is determinable which action, if any, is to be performed by ex-
amining the next source text character only. <

2. Variable Defining Rules

A variable defining rule is similar in form to a macro rule except
that the right side is restricted to being a single alternative. The
nonterminal on the left side names the variable being defined, in
addition tc naming the regular expression on the right side, as in a
macro rule.

Syntax
The single alternative is preceded by an equal sign (=).

Example

HCONST = fscan_reg_exprn
Semantics

A variable is used to convey numeric information from the source
text to the FSCAN program. Its semantics correspond to those of a macro
rule except that an implicit "evaluation-action" is attached tvo the
single alternative of the right part. When executed this action evaluates
the string processed by the right side of the variable defining rule.

et el da el e e e e Lt e L b Ll e e o i e e

et il 2o bl ol c oo o

S SRS

The number produced is stored as the value of the variable defined by
that rule. The variable can then be used in FSCAN contexts where in-
tegers are expected, in which case no macro substitution occurs, but
rathef. during execution the integer value is that produced by the most
recent execution of that variable's execution action. The compiler en-
sures that it is always possible to derive an integer from strings
matched by the right part of a variable defining rule.

3. Procedure Rule

A procedure rule is simply an FSCAN procedure, see II. A.
C. FSCAN Regular Expressions (abbreviation : FRE)
1. Atomic units

The atomic units of an FRE are terminals, nonterminals, and integers.

a. Terminals
Syntax

A terminal is either a "kept-string" or a "deleted string". A kept-
string is a sequence of characters enclosed in double quotes (") while
a deleted string is a sequence of characters enclosed in single quotes
(*). If a sharp (#) appears in the string, the sharp is ignored and
the next character is treated as the next character of the string, even
if that character is a double-quote, single-quote, or a sharp. For
terminals the strings are restricted to be of length one.
Examples

b i . AR Al
Semantics

The character of the terminal is compared with the next character
of the source text. If they match, the source text character is marked
as "kept" or "deleted", depending on whether the terminal is a kept-string
or a deleted-string. The FSCAN compiler will indicate * if it is ever
possible for a given FSCAN program to mark a source text character simul-
taneously as "kept" and "deleted". *(with an appropriate error message
at compile time)

b. Integers
Syntax
An integer is a string of digits.

Examples
53 0 05

Semantics
Integers have their usual meaning.
c. Nonterminals

Syntax
A nonterminal is a sequence of letters and digits, the first of

which is a letter, that is terminated by a character that is neither a
letter nor a digit.
Examples

A TEMP TEMP1 B3B
Semantics

Nonterminals can name macro rules, variables, or procedure rules.
As mentioned earlier, macro rule names are textually replaced by the
right part of the macro defining rule, for which the semantics have been
described. The semantics of variable names vary according to their con-
text. If a variable is used where an integer is expected, the current
value of the variable is used during execution; otherwise, the right part
of the variable definition (with implicit associated "evaluation action")
textually replaces the use of the variable name. When the non terminal
names a procedure, the appropriate procedure is called during execution.
The compiler ensures at compile time that at any point in execution, it
is determinable from the character presently being examined, whether to
invoke a procedure, and which one to invoke.
2. Operations

The operations from which FSCAN regular expressions are composed
can be divided into two types; basic operations, and extended operations
that can be defined in terms of the basic operations. Let A, B, C be
FRE's and let N be a variable or integer.
a. Basic Operations

Syntax

Alternation : A | B | C | ...
Concatenation : A B C . .,
Repetition 1A

Negation : NOT A

Example
NOT (n.ulu;n'n?n) ('X'*)

Semantics

An alternation successfully matches the source text if any of its
alternates does. A concatenation matches the source text if its operands
sequentially match the source text. A repetition matches an arbitrary
number (possibly zero) of its operand with the source text. The operand
of a negation is restricted to regular expressions that specify a set
of characters, all of which are kept-strings or all of which are deleted
strings. A negation then matches any character that is not in its
operand's character set. If matched, a source character is marked as
"kept" or "deleted" if the operand character set consists of kept-strings
or deleted-strings, respectively.

b. Extended Operations

Syntax
g Koow = A (A*)
Poas K P = A1)
LIST : A LISTB = A (BA)*
ELSE = A'ELSE B ELSE .C (ELSE ' iuwit = A i B € 5s-
*k . A Kk N = AAA ... A (N times)
7* : AN g A? A? A? .. A? (N times)

Restrictions: The operands of ELSE and the first operands of ** and
?* are restricted to being the names of procedures.
Semantics

The semantics of the extended operations are largely determined by
those of the basic operations by which they are defined. In addition,
though,the ELSE construct provides a "backup and restore” feature
where if the first operand fails to successfully match the source text,
the second operand is tried, etc. Also the ?* operator provides 1imited
backup in the sense that, if less than N A's have been successfully
matched, the parse is backed up to the state at which the last A
(possibly no A's) has been successfully matched.

c. Actions
Syntax

Actions are either kept-strings, deleted-strings, integers, or
nonterminals.

Examples
"INT" 'REAL' 8 203 CARDS RESCAN

Semantics

A string or an integer indicates that a token is to be output. For
a string, the type of the token output is indicated by a unique integer
associated at compile time with that string; for an integer, the type of
token is indicated during execution by outputting the value (e.g., "8"
or "203") of the integer action. Also output during execution is the
sequence of kept characters that were matched by the alternative corre-
sponding to that action being performed. Actions that are deleted-
strings indicate that their corresponding alternatives only mark char-
acters as deleted, and thus it is sufficient to simply generate the
token type when the action is performed.
(Note: A program cannot contain both integer and string actions.) A
nonterminal action indicates that the sequence of kept characters match-
ed by that action's alternative is to be rescanned by the FSCAN procedure
named by the nonterminal. This process of rescanning is sometimes
referred to as "screening".

IT1I. EXAMPLE OF A COMPLETE FSCAN PROGRAM
This FSCAN program specifies the scanner used by the FSCAN com-
piler, i.e., it performs the lexical analysis of an FSCAN program.

SCANNER PSCAN :
PSCAN -> (' '* é::mrn?s:’::::o/ INTEGER / KSTRING / DSTRING /
R / COMMENT))*
SCANNER KEYWORD : ; B
KEYWORD -> KEYWD NOTACHAR**0 ;
‘m - lsl lcl "l O.I '“' le. =) .
-> lx. l'l 'Dl =) 7
- l‘l .L' lsl l'l =) ,
-) lLl 'Il Osl 'T. =) 1‘
=> 'N' '0* 'T' => 19 ; END KEYWORD ;
SCANNER NAME :
WAME -> KACHAR (KACBAR / KDIGIT)* => 20 NAME
INTEGER -> KDIGIT+ NOTD**0 => 2] r) s v
KSTRING -> DQ (NOTDQSH / SHARP KC)* DQ => 22 ;
DSTRING ~> SQ (NOTSQSB / SHARP KC)* SQ => 23 ;
DELIMITER => ':' => 2
=> ';' >3
-> *(* => 5
-> ') = 6 ;
OPERATOR =-> '=' '>' => 4
-> '/' = 10
=> ‘'=' NOTRAB**(=>]1
=> '=! 3¢ =y 12
=> '2' NOTAST**0 => 13
-> et "0 =) 15
=> '?2' '*#' a) 16
=> '*' NOTAST**0 => 17
=> '+' => 18 ;
:THSIT -> :E?e:.;!oslﬂél;?)' SHARP ;
Cnnn - L] c ln 'B'/’P'/'G'/'!'/'I'/'J'/'K'/"L'/'H'/
'N'/'O'/‘P'/'Q'/'R'/'S' WP /R0 JRye /oS /eye Jaye /age
SCANNER NOTACHAR : T S e Sl
NOTACHAR ~-> NOT (‘A'/'B'/'C'/'D'/'E'/'P'/'G*/ 'H'/'1'/ 'J'/'K*/'L'/'N*/
'H'/'O'/'P'/'Q'/'R'/'S'/'T’/'U'/'V' l'l U‘O 'Y' tee H .
KDIGIT -> '0'/'1"/'2'/'3'/'4'/'5',"6'/'7'/40'/49' { / Lt P TR i
SCANNER NOTD :
NOTD -> NOT KDIGIT ; END NOTD ;
NoTas <> Nor(44+/e4=5) "} RoTSOSH >
=2 > ") : NOTSQSH -> W T AV
SCANNER NOTRAB : yss v i &
NOTRAB -> NOT '>' ; END NOTRAB ;
SCANNER NOTAST :
NOTAST -=> NOT '*' ; END NOTAST ;
KC => (NOT® ")/" * ;

'END PSCAN
LINE NUMBER INTERPRETATION
1 The top level procedure, and therefore the program,
is called FSCAN.
2 The scanner accepts a sequence of KEYWORD's, NAME's,

INTEGER's, etc., each of which can be preceded by

an arbitrary number of spaces. As KEYWORD's and
NAME's cannot be differsntiated by an SLR (1) process,
the ELSE operation must be used to allow the accept-
ance of either. Note that KEYWORD's being the first

LINE NUMBER INTERPRETATION

2| operand of ELSE will cause a string that could be
(cont'd) accepted as either a KEYWORD or a NAME, to be accept-
ed as a KEYWORD.

3 A KEYWORD is a KEYWD followed by some nonalphabetic
(NACHAR) character. Note that the exponent of zero
indicates that although it is checked that the follow-
ing character is nonalphabetic, no (zero) nonalph-
betic characters are actually processed at this point.
In case the following character were alphabetic, the
KEYWORD scanner would fail, and the alternative, NAME,
would be invoked at the point in the input where the
KEYWORD scanner had been initiated.

4 KEYWD will accept, and mark as deleted, the strings
"SCANNER:, "END", "ELSE", "LIST", and "NOT", and will
output tokens numbered 8, 7, 9, 14, and 19, respec-
tively.

5 NAME will accept, and mark as kept, an alphabetic
character followed by an arbitrary number of alpha-
numeric characters. Token number 20 will then be out-
put, as well as the sequence of kept characters mark-

: ed by NAME.

_ j The rest of the program is interpreted in an analogous fashion. It thus
| provides a rigorous and complete specification of the lexical analysis of
FSCAN programs. The abbreviated non-terminals are to be read as follows:

KSTRING : kept string

DSTRING : deleted string

NOTACHAR not an alphabetic character
KACHAR ¢ kept alphabetic character
KDIGIT : kept digit

.e

NOTD : not a digit

{] : double quote

: NOTDQSH : not a double quote or a sharp
KC ¢ kept character
SQ : single quote

NOTSQSH : not a single quote or a sharp
NOTRAB : not a right angle bracket
NOTAST : not an asterisk

With this information, the sample FSCAN program also provides a structur-
ed and understandable description for a human reader.

IV. PROGRAMMING HINTS FOR FSCAN

Much of FSCAN programming is similar to writing a grammar for some
parser generator. The regular expression-style operators are, for the
most part, straightforward extensions. The distinction, though, between
a procedure and a macro-rule, i.e., "SCANNER A : A+~ B C, END A" vs.
"A » B C" does not correspond to any grammatical concepts, but rather to
the normal programming language concepts of a procedure and a macro.
In particular, a macro (when used in more than one place) causes a
larger object program to be generated (as a copy of the macro is insert-
ed at each use of the macro) while a procedure executes more slowly
(due to the overhead of the procedure call and return). An additional
distinction that is important for programming is that while only one
procedure can be executing at any particular time, several macro rules
can conceptually be executing in parallel.

The "ELSE" operator involves considerably more overhead than the
"|" operator in that the state of the scanner must be saved so that it
can be restored in case a particular alternative of the "ELSE" operator
fails, implying the next alternative must be tried. In contrast, the
"|" operator conceptually applies all of its alternatives in parallel.
Thus whenever possible, the "|" operator should be used for the sake
of efficiency.

The "**" and "?*" operators are conceptually straightforward, except
possibly for the following two characteristics, First, "A**@" indicates
that the next character in the input is checked for a match with a
legal first character of A, but that A does not actually process any
characters, due to the exponent of p. Second, the "?7*" operator in-
volves the same overhead as the "ELSE" operator, since "A ?* 5" must
have the ability to back up to the state of the scanner after the third
A was accepted, in case the entire fourth A could not be matched.

e et it e e s i i

o |

V. IMPLEMENTATION DETAILS

Compiler. The complete FSCAN compiler runs in 36,000 (decimal)
words on a CDC 6400 machine. The compile time for an FSCAN program
for ANSI FORTRAN is 28 seconds. The size of the object code (tables)
produced for this scanner is 1400 (decimal) words.

The compiler is written in machine-independent standard ANSI
FORTRAN, with the following exceptions:

1.

2‘

Certain non-standard functions are assumed:
a. IAND (A,B), IOR (A,B), INOT (A)
These should return the respective bitwise logical opera-
tion on their arguments

b. LRS (A,I), LLS (A,I)
These should return the logical binary right and left
shift, respectively, of the argument A by the integer
amount I, with zero fill.

c. INTGER (A)
The argument A is a character stored in 1H or Al for-
mat (assumed equivalent). The result is an integer
such that:
1. 0 < INTGER (A) < # distinct characters
2. INTGER (A) = INTGER (B) iff A is the same char. as B
3. INTGER (1Hx) - INTGER (1Hy) = x-y if x, y are digits,

i.e., INTGER (1H7) - INTGER (1H3) = 4

d. ENDFIL (I)
This returns true iff logical unit I is at end of file.

It 1s assumed that the # characters < 2 -(# bits in a word).
If this is not the case, the bit vector module would have to
be altered to represent a vector as more than 2 words.
Note: This machine dependency is being replaced by the re-
quirement that on importation to a new machine, the constants
NMBIT'S and NMCHRS be initialized to correspond to the new
machine. For CDC, the initialization is

DATA NMBITS/60/, NMCHRS/64/

Iﬁiehgreter. The object code for the interpreter consists of 3000

-12-

words excluding the space required for the tables, The interpreter
source code is machine-independent standard ANSI FORTRAN, with the
same exceptions found for the compiler.

The tables output by the compiler are in the form of a BLOCK DATA
ANSI FORTRAN subprogram which is to be compiled and 1oaded with the
object code for the interpreter.

Note: For maximal time efficiency, the routines IN and ADVANC should
be replaced by equivalent optimized machine-language routines.

The source for the compiler is on file COMPIL.

The compiler is called by: CB, input, 1isting, errors, tables.

The source for the interpreter is on file NTD.

The interpreter is called by: NTDB, input, 1isting, errors.

The FSCAN program for ANSI FORTRAN is on the file SCAN.

The file SCANT was produced by a CB, SCAN, 1isting, errors, SCANT run.
(NTCB is produced from the compilation of SCANT and NTD)

To use the scanner, NTDB,

for each desired token, call SCANNER;
the token will be returned in /TOKENC/,

where TKNTYP is the type of the token
TKNCHR (30) is an array of Al characters (the sub-rosa info)
where TKNCHR (1) ... TKNCHR (ITKNCH) are the characters
TOKERR is a logical flag which is true i1ff the token
contains an error

R P RN 281 o A e ———— e A —————— !

13-
Appendix
Syntax of FSCAN programs
SCANNER
+ 'SCANNER' GOAL_SYMBOL ':' (RULE ';') + 'END' GOAL_SYMBOL;
RULE

+ NONTERMINAL ('>' REG_EXPRN('=® ' ACTION)?)+
+ VARIABLE '=' REG_EXPRN
+ SCANNER ;

REG_EXPN - REG TERM list '[",
REG_TERM -+ REG_FACTOR + ;
REG_FACTOR

+ REG_PRIMARY ('*'|'+'|'?')?
+ 'NOT' REG_PRIMARY
+ REG_PRIMARY 'LIST' REG_PRIMARY;

REG_PRIMARY

+ (' REG_EXPRN ? ')

+ NONTERMINAL 1ist 'ELSE'

~ NONTERMINAL ('*%'|'?%') EXPONENT
» TERMINAL ;

ACTION -~ SCREENER | TERMINAL | '<INTEGER>' ;
EXPONENT - VARIABLE | '<INTEGER>' ;

GOAL_SYMBOL ~ '<NAME>' ;

NONTERMINAL + '<NAME>' ;

VARIABLE - '<NAME>' ;

SCREENER + '<NAME>' ;

TERMINAL + '<KEPT_STRING>' | '<DELETED_STRING>' ;

Note: "A?" is equivalent to "(A]e)"
"A 1ist B" is equivalent to A(B A)*

VI.
0]

(2]

-14-

Bibliography

ANSI : FORTRAN. X3.9-1966, American National Standards Institute

1966.

Osterweil, L. J.; and Fosdick, L. D. "DAVE - a validation, error

detection and documentation system for FORTRAN programs,” Software

Practice and Experience.

SE—

